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By means of numerical simulation we confirm that in graphene with point defects a quasigap opens in the
vicinity of the resonance state with increasing impurity concentration. We prove that states inside this quasigap
cannot longer be described by a wave vector and are strongly localized. We visualize states corresponding to
the density of states maxima within the quasigap and show that they are yielded by impurity pair clusters.
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I. INTRODUCTION

Not so long ago, graphene was being cleaved out by the
so-called scotch-tape technique.1 Since then, this truly two-
dimensional �2D� material continues to put new challenges
to the scientific community. Graphene is already known to
manifest some remarkable properties. The most unusual of
them, and, correspondingly, the most frequently emphasized
on, is the Dirac dispersion of Fermi elementary excitations.
This unusual spectrum makes graphene a rather promising
material for a variety of applications in computer electronics
and chemical sensors. While graphene is known to possess
outstanding structural stability and crystalline quality, exist-
ing methods of its isolation necessarily imply the presence of
a certain amount of defects. Moreover, impurities can be
embedded into graphene intentionally in order to tune up its
physical characteristics in accordance with a specific appli-
cation. Even though some applications are destined for a
distant future, the need in deliberate and proper functional-
ization of graphene provides adequate grounds for an exten-
sive study of different types of defects in this material. De-
spite a noticeable quantity of papers devoted to the study of
impure graphene, a comprehensive understanding of impu-
rity effects on its electron spectrum is still lacking.

While different types of disorder are inherent in graphene,
below we are particularly interested in the substitutional
point defects among them. This commonly used model ap-
plies not only to chemically substituted carbon atoms or an
absence of them �vacancies�, but also, to a known extent, to
adsorbed atoms, molecules, or radicals on the graphene
sheet.2 As concerns the substitutional impurities in graphene,
comprehensive attention has been paid as to the single im-
purity problem, in which the impurity-state wave function
has been studied for a single defect and a pair of them,3 as to
the evolution of the density of states �DOS� in graphene with
increasing the impurity concentration.4–8 However, a phe-
nomenon like a spectrum rearrangement is frequently over-
looked. The main concept of the spectrum rearrangement is
based on the existence of some critical impurity concentra-
tion at which the spectrum of a disordered system undergoes
a cardinal qualitative change. As a rule, the spectrum rear-
rangement should be related to the appearance of a local
level or a resonance state. Characteristics of this impurity
state, namely, its energy and damping, which are determined

within the single-impurity problem, are shaping the scenario
and type of the subsequent spectrum rearrangement. Albeit a
single point defect is expected to perturb only the lattice site
occupied by an impurity or, at most, the adjacent lattice sites,
and thus should be classified as a short-range defect, the
effective radius of the correspondent impurity state can far
exceed the lattice constant, when its energy is close to the
van Hove singularity in the spectrum �i.e., any point of
nonanalyticity in the DOS: either an infinite peak or a dis-
continuity in its slope�. Spatial overlap of individual impurity
states, which occurs with increasing the impurity concentra-
tion, is marking the onset of the spectrum rearrangement.
This simple consideration gives a possibility to roughly esti-
mate the critical concentration of the spectrum rearrange-
ment. Since the effective radius of the single impurity state
in certain cases can be large compared to the lattice constant,
the respective critical concentration should be fairly low. As
a result, in such situations only a trace amount of impurities
can provoke the spectrum rearrangement.

In graphene, the spectrum rearrangement driven by an
increase in the concentration of defects described by the Lif-
shitz model has been analytically examined in Refs. 9 and
10. It has been demonstrated that the passage of the spectrum
rearrangement is of the anomalous type due to a weak reso-
nance state. The anomalous type of the spectrum rearrange-
ment implies that the cross-type splitting of the dispersion
around the resonance energy does not occur. With increasing
impurity concentration, states are showing a tendency toward
localization close to the resonance energy. For a sufficiently
large compared to the bandwidth impurity potential this leads
to the opening of a quasigap centered at the resonance en-
ergy. This quasigap, which is filled with localized states, is
gradually growing while the impurity concentration is in-
creased. Finally, the quasigap sweeps up to the Dirac point in
the spectrum at the critical concentration of the spectrum
rearrangement. With the further concentration increase �i.e.,
after the spectrum rearrangement�, the quasigap width is rap-
idly enlarging. In this regime the quasigap width is approxi-
mately proportional to the square root of the impurity con-
centration. In Refs. 9 and 10 the analysis of the spectrum
rearrangement in graphene has been conducted by means of
the coherent-potential approximation �CPA� applicability cri-
terion, which is instrumental in determining spectrum do-
mains with different degrees of localization.11

The aim of the current work is to carry out the numerical
simulation of graphene DOS with the special emphasis on
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the spectrum rearrangement phenomenon �for its physical
description see also the review Ref. 12�. Considering for
each chosen perturbation strength those impurity concentra-
tions that are close to the expected critical concentration of
the spectrum rearrangement, we show that by implementing
the criterion of the CPA applicability it is possible to judge
upon the spectrum rearrangement process in graphene. As a
next step in our previous attempts,9,10 we are paying a special
attention to the CPA validity. A comparison between the CPA
output and the numerical results proves that the CPA appli-
cability criterion works adequately. We also notice that when
impurity concentration is low enough, the average T-matrix
approximation �ATA� is in a good agreement with numeri-
cally calculated DOS. We discuss the spectrum rearrange-
ment in graphene and the correspondent interplay between
numerical and analytical results. After the spectrum rear-
rangement takes place, we identify the cluster structure of
graphene’s DOS in the vicinity of the impurity resonance
energy. The structure observed evidently cannot be explained
by means of available analytic approaches and requires fur-
ther analysis.

As an effective tool for numerical calculations we employ
the negative eigenvalue theorem as suggested by Dean.13

This approach, to the best of our knowledge, hasn’t been
used for graphene yet �see, e.g., Refs. 7 and 8�. Its advan-
tages are discussed below. Finally, we describe a drift of the
Fermi energy from the DOS minimum, a kind of a self-
doping effect, when Fermi level shifts away without actual
introduction of additional carriers into the disordered system.

The paper is organized as follows: in Sec. II A we remind
the basic mathematical impurity model. In Sec. II B we in-
troduce the concept of spectrum rearrangement. In Sec. II C
we briefly set forth the numerical approach. In Sec. III we
present and discuss results. In the last section we summarize
outcomes of our study.

II. MODEL DISORDERED SYSTEM AND METHODS OF
ITS ANALYSIS

A. Impurity model

In the tight-binding approximation the simplest �for spin-
less fermions� graphene Hamiltonian has the form,

H0 = t �
�n�,m��

an�

† am�
. �1�

Here, t�2.7 eV is the hopping integral, n and m denote
vectors of lattice cells, Greek indices � and � correspond to
the graphene sublattices, and summation runs over all nearest
neighbors. It has been confirmed experimentally that this ap-
proximation describes graphene’s electronic spectrum fairly
well.14

The diagonal element of the Green’s function in the site
representation,

gn�m�
��� = lim

�→0+
�

j

�n�
�j��m�

† �j�

� + i� − ��j�
, �2�

where the summation runs over all eigenstates ��j�, and ��j�
are their corresponding eigenvalues, in the case of Hamil-
tonian �1� can be easily approximated by

g0��� = g0�0�
��� �

2�

W2 ln� ���
W
	 − i�

���
W2 �3�

in the low-energy limit, i.e., ����W=
�
3t, where W is the
bandwidth. A detailed derivation of Eq. �3� can be found in
Refs. 9 and 10. A comparison between the exact diagonal
element of the Green’s function and its low-energy approxi-
mation is given in Fig. 1. In this figure, and in figures that
follows, the energy is given in the units of the hopping inte-
gral t. Since we are interested only in the relatively close
vicinity of the Dirac point in the spectrum, the approxima-
tion, Eq. �3�, looks appropriately shaped.

While the host DOS can be straightforwardly found from
the imaginary part of the latter expression, impurities break
the translational symmetry and so the DOS of disordered
graphene �which is the focus of the current investigation�
cannot be directly obtained. Point defects in graphene are
usually modeled by adding the following perturbation in the
Hamiltonian �the so-called Lifshitz model�

U = VL�
n�

	n�an�
† an�, �4�

where VL is the impurity potential and 	n� is unity with the
probability c or zero with the probability �1−c�. Thus, im-
purities are supposed to be distributed between lattice sites
without any correlation while the probability c corresponds
to the impurity concentration. Consequently, for a large sys-
tem with N lattice sites the total amount of impurities tends
to cN.

B. Spectrum rearrangement and CPA applicability criterion

When the impurity concentration is small enough, con-
ventional analytic approaches15,16 can be applied. To be con-
cise, in the first approximation the averaged perturbed
Green’s function

G��� = ��� − H0 − U�−1� �5�

can be found as some renormalization of the host Green’s
function

G��� = g�� − 
���� . �6�
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FIG. 1. �Color online� A comparison between the exact g0���
�solid line� and its analytical approximation, Eq. �3� �dash-dotted
line�.
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Two cases are of a particular interest: the ATA,


ATA��� =
cVL

1 − �1 − c�VLg0���
, �7�

which accounts for multiple single-site scattering by an im-
purity, and the coherent potential approximation,


CPA��� =
cVL

1 − �VL − 
CPA����g0�� − 
CPA����
, �8�

which adds the self-consistency. In the CPA the self-energy is
taken from the requirement that the single-site renormalized
T-matrix should be zero on average. In both methods scatter-
ings on pairs and larger groups of impurities are omitted.
Thus, these approximations are expected to remain valid,
when cluster effects are insignificant in a disordered system.

However, when impurity concentration is gradually in-
creased, individual impurity states �visualized for graphene,
e.g., in Ref. 3� begin to overlap with each other. Thus, a
contribution from scatterings on impurity clusters to the self-
energy is becoming more pronounced in the vicinity of the
impurity-state energy. As a result, a significant overlap be-
tween impurity states drives the spectrum of a disordered
system into substantial modifications. In other words, it
points out the critical concentration of the spectrum rear-
rangement. This simple reasoning provides a possibility to
estimate the critical concentration in graphene with Lifshitz
impurities. From the expression for the nondiagonal element
of the host Green’s function,17 it can be deduced that an
effective decay radius of the impurity state is rimp��VL /W�,
where rimp and other lengths below are made dimensionless
by the square root of the unit-cell area halved. It should be
noticed that in commonly encountered cases for the Lifshitz

impurity model, an increase in the parameter VL leads to the
intensification of the impurity-state localization and, conse-
quently, to a decrease in rimp. The opposite result for
graphene is caused by the particle-hole symmetry of the
Dirac Hamiltonian. Another characteristic space interval is
the average distance between impurities, which depends on
impurity concentration as �r�
1 /
c. Both radii coincide
��r��rimp� at some impurity concentration cr
�W /VL�2.
Thus, the condition �r��rimp defines the spectrum rearrange-
ment concentration cr. As has been argued in Ref. 9, at this
critical concentration a quasigap filled with strongly local-
ized states should sweep from the resonance energy to the
Dirac point, stimulating an accumulation of considerable
changes in the DOS. Albeit this condition is reasonably in-
tuitive, it is too rough for an accurate forecast of the critical
concentration. Moreover, it does not provide any information
on the energy intervals, in which the spectrum is more ex-
posed to the rearrangement process. Since cluster effects,
which make up the core of the spectrum rearrangement, are
not included into the CPA, the CPA applicability criterion
can be successfully employed for the analysis of the spec-
trum rearrangement process. This very approach has been in
fact realized in Refs. 9 and 10 for the impure graphene.
Namely, by following the conventional technique of the
Green’s-function cluster expansion12,16 it is possible to rep-
resent the self-energy as a series in all possible groups of
impurity centers. At that, the first term of this series corre-
sponds to the conventional CPA while other terms corre-
spond to cluster corrections to the CPA. By the order of
magnitude, the absolute value of the ratio between two suc-
cessive terms in this series does not depend on the size of
impurity cluster. This ratio forms the small parameter of the
series,

R��� = �c� VL − 
CPA���
1 − �VL − 
CPA����g0�� − 
CPA�����2

+ �1 − c�� − 
CPA���
1 + 
CPA���g0�� − 
CPA�����2�

�� �
n�0

�g01n1
�� − 
CPA�����2 + �

n
�g01n2

�� − 
CPA�����2� , �9�

which is indicative of the relative strength of cluster effects
at a given energy, and can be used to outline qualitatively
different spectrum domains.11

In those spectral domains, where the small parameter of
the series R��� is high, the CPA is not reliable and correspon-
dent states are showing a tendency toward localization. For
ordinary three-dimensional systems a mobility edge should
be expected close to the energy, at which R���=0.5.11 At the
same time, it can be demonstrated that the maximum magni-
tude of R��� is unity, and it is reached at the van Hove sin-
gularities of the spectrum. At the low impurity concentration,
expression �9� can be approximated by

R��� = �
CPA
2 ���

c �g0
2�E� +

�g0�E�
�E �

E=�−
���
� . �10�

There are two factors in Eq. �10�. The first of them,

CPA

2 ��� /c, increases in absolute magnitude around the
impurity-state energy, which can be determined from the Lif-
shitz equation, 1=VLg0���. The second one �in the square
brackets� is the sum of the Green’s function and its deriva-
tive, which increases in the vicinity of the Dirac point �or
any other van Hove singularity�. Consequently, the energy
dependence of the CPA applicability criterion should possess
different maxima, around which the CPA is not valid. Even
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though the CPA applicability criterion has been deduced for
the fictitious system with a single Dirac cone in the spec-
trum, it will be apparent below that it is an adequate tool for
the spectrum rearrangement analysis in the actual graphene.
As regards the CPA and the ATA, it is not difficult to show
that presence of the two different Dirac cones in graphene
alters their output only in a trivial way.

C. Numerical method

Numerical techniques involving diagonalization of the
random matrix are too resource consuming to simulate dis-
ordered systems approaching in their dimensions real experi-
mental samples. However, information on eigenvectors is su-
perficial for the DOS calculations. So far, the Haydock
method,18 based on an expansion of the diagonal element of
the Green’s function into an infinite fraction, has been exten-
sively used for numerical calculation of the graphene
DOS.7,8 Still, this approach is not without its shortcomings. It
is the local DOS �LDOS� that is calculated within this ap-
proach. The necessity to truncate the infinite fraction at some
point sometimes leads to unphysical oscillations of the
LDOS, which are difficult to keep under control and to dis-
tinguish from actual features of the spectrum. Furthermore,
the total DOS is obtained in the Haydock method by averag-
ing the LDOS at several lattice sites, and an inclusion of all
sites in the model system into the averaging process is abso-
lutely impractical. The above leaves a touch of uncertainty in
the DOS minutiae. In a contrast, we relied on the Dean’s
calculation scheme.13 It allows to obtain the total number of
eigenvalues of a Hermitian matrix that are less than a speci-
fied value. This provides a possibility to explore the DOS
with a desired degree of precision and to preserve all particu-
larities of the resulting curve.

This method has proven to be especially effective for one-
dimensional �1D� systems. The time required to finish a
single Dean’s algorithm loop is proportional to the number of
atoms �N� in a 1D system, which is fast enough to simulate
really large 1D systems. However, with an increase in the
system’s dimensionality, the computational time required for
one loop increases. For a 2D system it is proportional to
N2.13 In our case of graphene, we obtained DOSs for the
system comprised of 5.3�106 atoms, which corresponds to a
system with the linear dimensions around 0.3 
m—about
the size of real experimental samples. To eliminate the influ-
ence of boundary states on the DOS we applied periodical
boundary condition for the zigzag boundary of the model
system under consideration.19 The numerically calculated
DOS for the described model system is given in Fig. 2. Some
jaggedness seen in the DOS curve is related to the finite size
of the model system.

III. RESULTS AND DISCUSSION

Figures 3–5 correspond to impurity perturbations VL=4t,
VL=8t, and VL=16t, respectively. At the negative impurity
potentials VL the whole picture is simply mirrored against the
zero energy. For each perturbation magnitude we consider
qualitatively different regions of impurity concentration:

c�cr �before the spectrum rearrangement�, c�cr �in the
course of the spectrum rearrangement� and c�cr �after the
spectrum rearrangement�. We plot the CPA DOS, the ATA
DOS, and the numerically calculated DOS, with the left Y
axis representing their values. We add the CPA applicability
criterion by plotting the small parameter of the series R���
�solid line�, with the right Y axis showing its values in the
same figures. We also designated by the triangle the Fermi-
level position obtained from the numerical data for the im-
pure system.

For the low concentrations �i.e., those that are less than
cr�, analytical curves, namely, the CPA DOS and the ATA
DOS, perfectly fit the numerical histogram. The DOS only
slightly deviates from the conventional Dirac DOS mainly
because of the shift toward positive energies. The applicabil-
ity criterion R����0.5 is satisfied practically at all energies
within the chosen window, R��� is small and characteristi-
cally contains two maxima. The sharp one corresponds to the
van Hove singularity and predicts failure of analytical ap-
proximations in the Dirac point vicinity. Less sharp one is
due to the 
2 factor.
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FIG. 2. �Color online� Density of states for graphene without
impurities obtained by Dean’s numerical method compared to the
exact one for the infinite system.
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FIG. 3. �Color online� A set of figures corresponding to impurity
perturbation VL=4t and different concentrations. Critical concentra-
tion is cr�0.015. Stepped curve stands for the numerical computa-
tion, dashed—the CPA, dash dotted—the ATA �left Y axis repre-
sents their values�. Solid black curve is R��� �right Y axis represents
its values�. Triangle on the energy axis denotes the Fermi-level
position.

PERSHOGUBA, SKRYPNYK, AND LOKTEV PHYSICAL REVIEW B 80, 214201 �2009�

214201-4



When the impurity concentration is increased approxi-
mately to the critical value cr, maxima of small parameter
R��� show the tendency to merge together into a single maxi-
mum, which height goes beyond the 0.5 value �as it was
shown in Ref. 9�. This event indicates the onset of the spec-
trum rearrangement, providing a reference point for the criti-
cal concentration at the given VL. In the domain with height-
ened values of R��� the discrepancy between the CPA DOS
and the simulation results is more clearly expressed.

Figures also show that the perturbation VL=4t is marginal
as the resonance state appears at the periphery of the region,

where the Dirac approximation, Eq. �3�, works well. Even
for low concentrations some divergence is seen between ana-
lytical and numerical curves at the edges of energy domain
considered. Impurity resonances are smeared out and, there-
fore, cannot be readily discerned for a perturbation of this
strength. Likewise, for such a VL the impurity resonance is
not well defined in the single impurity LDOS. It should be
mentioned that in the weak scattering regime �VL�W� the
spectrum rearrangement process does not take place at all �as
it was evident in Ref. 7, when the average DOS maintained
the mere rigid shift with increasing impurity concentration�.

With an increase in VL the impurity resonance becomes
well defined. It has been obvious beforehand that the CPA
DOS should not contain any sharp features in a contrast to
the ATA DOS. Because of the absence of self-consistency the
ATA gravitates more to the single-impurity resonance. It is
clearly seen in Figs. 4 and 5 that the ATA DOS quite cor-
rectly reproduces the resonance peak at the impurity concen-
trations that are close to the critical one. The larger is the
impurity potential VL, the better the ATA curve fits numerical
data.

This coincidence, however, is not pertained to the impu-
rity concentrations that exceed the critical concentration of
the spectrum rearrangement. With an increase in the impurity
concentration the maximum position shifts in the direction of
negative energies from the energy of the single-impurity
resonance and the second, accompanying maximum is com-
ing forth. While the shift of the primary maximum from the
Lifshitz equation root is considerable, the maximum in the
ATA DOS remains still at the single-impurity resonance en-
ergy. The aforementioned irregular structure in the DOS is
the most intriguing feature of the spectrum which cannot
now be interpreted with the help of the available CPA or ATA
approximations. The maxima in the DOS are located within a
large domain, in which the CPA DOS does not follow the
simulated curve and, correspondingly, the CPA validity cri-
terion is not satisfied �R����0.5�. This domain covers the
single-impurity resonance and the minimum in the DOS, at
which valence and conduction bands are docking each other.

In addition, to study the character of states within this
domain, we calculated the inverse participation ratio7 P��� as
a localization criterion in a system of a smaller size

P��� = �
n�

��n�
�4, �11�

where summation runs over all lattice sites. Even though the
comparison for systems of different size is not included in
the current paper, we should mention that the height of P���
curves does not diminish with increasing the size of the sys-
tem suggesting electron localization. The dynamics of the
inverse participation ratio with increasing the impurity con-
centration is given in Fig. 6. Here again periodical boundary
conditions were used at zigzag edges of the sample to get rid
of the sharp peak at �=0, which is related to boundary states.
Chosen concentrations repeat those from Fig. 4 that corre-
sponds to the same impurity potential. A radical localization
intensification after the spectrum rearrangement is evidently
seen. States are showing a tendency for their localization in
the very region, in which the CPA is not valid. This fact also
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FIG. 4. �Color online� A set of figures corresponding to impurity
perturbation VL=8t and different concentrations. Critical concentra-
tion is cr�0.003. Stepped curve stands for the numerical computa-
tion, dashed—the CPA, dash dotted—the ATA �left Y axis repre-
sents their values�. Solid black curve is R��� �right Y axis represents
its values�. Triangle on the energy axis denotes the Fermi-level
position.
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FIG. 5. �Color online� A set of figures corresponding to the
impurity perturbation VL=16t and different concentrations. Critical
concentration is cr�0.0007. Stepped curve stands for the numerical
computation, dashed—the CPA, dash dotted—the ATA �left Y axis
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confirms a close connection between the CPA applicability
criterion and the Ioffe-Regel criterion.20 When comparing
Fig. 6 to Fig. 4, in particular, at c=0.012, it is obvious that
the largest values of P��� match the peaks in the DOS.

A pair of states corresponding to the sharp peaks in the
inverse participation ratio graph are shown in Figs. 7 and 8.
The states corresponding to the first �counting from �=0�
maximum in the DOS at ��−0.14t are mostly represented
by relatively distant impurity pairs and triads. Equally chal-
lenging is the origin of the second DOS peak at ��−0.19t.
The visualization of the wave function belonging to this re-
gion is provided in Fig. 7. It shows that this peak is largely
due to the characteristic pattern of impurities, which is de-
picted in the same figure. It is worth mentioning that impu-
rity atoms are located on one sublattice for these strongly
localized states while the � function is concentrated on the

other sublattice. It resembles the situation with a double
impurity3 and can be attributed to the relation �g0�n�

�
� �g0�n�

� for ���→0. To summarize, when the critical concen-
tration of impurities is exceeded, a quasigap filled with lo-
calized states is developing in the graphene’s spectrum be-
cause of the impurity cluster effects. Since the CPA does not
account for cluster effects and scatterings by impurity clus-
ters dominate within this quasigap, the CPA is not applicable
in this region.

Numerical results show that Dirac point as such is elimi-
nated from the spectrum when the critical concentration cr is
reached. Consequently, it is not justifiable to speak about the
Dirac point existence, albeit the impurity concentration can
be relatively low �as low as cr is�. The CPA and the ATA do
not correctly describe the DOS minimum between the va-
lence band and the conduction band for c�cr. Normally, the
Dirac point coincides with the Fermi energy for the pure �or
undoped� graphene. However, at the finite concentration of
impurities situation changes drastically. Dean’s approach al-
lows to track the position of the Fermi level since it outputs
the total number of states located below any given energy.
The Fermi-level monitoring revealed that its position shifts
in the positive direction away from the DOS minimum. The
greater is the impurity concentration the more prominent is
the Fermi-energy shift from the DOS minimum, which trans-
forms graphene into a “doped” conductor without any gate
voltage applied. Should impurity atoms bring additional
electrons in the system, the doping effect will be increased.

This shift can be explained by the following uncompli-
cated consideration. Without the conduction band, the va-
lence band should develop a strong tail above its upper edge
for a positive impurity potential VL�0. Since the conduction
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band is not separated from the valence band, this tail falls
inside the conduction band producing excessive states above
the DOS minimum. Keeping in mind that total number of
states within the single band should be preserved because of
the sum rules, this expansion of the valence band into the
conduction band yields a deficit of states below the DOS
minimum. At the constant amount of carriers, extra electrons
are flowing out to the conduction band altering the Fermi-
level position. With increasing impurity concentration the
tail is gradually becoming more pronounced, which conse-
quently makes the shift in the Fermi energy more apparent.

IV. CONCLUSION

A comprehensive analysis of the spectrum rearrangement
in graphene with substitutional impurities by numerical
simulation has been carried out. We studied the DOS near the
Fermi level in graphene for a set of impurity potentials and
impurity concentrations.

It was demonstrated that indeed a certain characteristic
concentration of impurities can be specified, at which the
graphene’s spectrum undergoes a qualitative change. This
critical impurity concentration is associated with the spatial
overlap of individual impurity states. In a turn, it has been
established that the cardinal modification of the spectrum is
manifested by the opening of the filled with highly localized
states quasigap around the impurity resonance energy. The

cluster effects were found to be responsible for the quasigap
formation. Pair impurity states representing the most promi-
nent peaks in the DOS within the quasigap have been visu-
alized, which emphasized the dominance of scatterings on
impurity clusters inside the quasigap. Aforesaid confirmed
the predicted scenario of the spectrum rearrangement in
graphene.

A comparison of the CPA DOS with the numerically
simulated DOS supported the suggested CPA applicability
criterion and its efficacy as an instrument in the description
of the spectrum rearrangement passage. As well, intimate
correlation between the CPA validity and the degree of elec-
tron localization has been revealed. That is, inside the quasi-
gap, in which cluster effects are essential and states are lo-
calized, the CPA is not reliable. Furthermore, we report about
the phenomenon of the Fermi-level shift from the DOS
minimum—a kind of a self-doping, which alters the conduc-
tivity of impure graphene without gate voltage variation even
in the case of neutral impurities.
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